aiemyos Ayenp

€200-¢5056 VO ‘eig|Q BlUBS SWI 1S

AS
sl A

VSN swelsAg MYy

0S-9/680x0 Program

IBF
IEEE488/GP-IB File Manager

A Brief Look

Rev. A 2/92

Copyright © 1992 ARK Systems USA
All rights reserved.

Printed in U.S.A.

Copyright © 1992 ARK Systems USA.

This document contains proprietary information which is pro-
tected by copyright. All rights are reserved. Reproduction of this
document, in part or whole, by any means, electrical or otherwise,
is prohibited, except by written permission from ARK Systems
USA.

The information contained in this document is believed to be
accurate as of the date of publication, however, ARK Systems
USA will not be liable for any damages, including indirect and

consequential, from reliance upon this documentation.
The information herein is subject to change without notice.

IBF is a trademark of ARK Systems USA. 0S-9, 0S-9/68000, and
08-9000 are trademarks of Microware Systems Corporation. HP,
HP-IB, HP-UX and DIO are trademarks of Hewlett-Packard
Company. UNIX is a trademark of AT&T.

We express special thanks to Mr. Steven Weller of Windsor
Systems and Mr. Toshikuni Osogoe of Osque Systems for their
contributions to the improvement of this booklet.

Printing History
Rev.A 2/92 First printing.

Table of Contents

Table of Contents

Chapter 1 Introduction

Chapter 2 IBF Overview

2.1
2.2
2.3
24
2.5
2.6

Chapter 3 Questions and Answers .

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Modular Software Architecture
Easy Programming

Device Classification

Fast Block Transfer .
Portability and Compatibility
The Future

The IEEE488 Standard

Data Transfer

Bus Management |

Licenses

Porting . e e
Application Program Development
Technical Support

Chapter 4 Specifications

Appendix Authorized Distributors

© 00 W 3 O Ut W

10
10
11
14
15
18
20
20

21

23

IBF — A Brief Look

Chapter 1
Introduction

IBF is a file manager for the 0S-9/68000 real-time operating
system. IBF supports IEEE488, an industry standard interface
bus primarily for test and measurement applications. IBF lets
your application programs access devices on an IEEE488 bus just
like other OS-9 file devices. This provides simplicity and uni-
formity of device access to your application programs.

IBF was developed in 1988 by an ex-HP senior engineer at ARK
Corporation in Japan to provide a powerful software base to the
interface between 0S-9 and IEEE488. Since then, IBF has been
ported to a number of different platforms and has proved the

correctness of the original design concept.

Although this booklet was designed primarily for providing a
general introduction to IBF to those who are looking for powerful
and elegant software support for IEEE488 under 0S-9/68000,
those customers who have already been using IBF may take
advantage of the topics and tips described herein.

If you need additional copies of this booklet, send check or money order to
ARK Systems USA, P.O. Box 23, Santa Clara, CA 95052-0023. 1 copy:
$1.00; 10 copies: $8.00; 50 copies: $30.00. Foreign countries other than

Canada and Mexico add 50%. Remittance must be made in U.S. funds.

IBF Overview

Chapter 2
IBF Overview

2.1 Modular Software Architecture
IBF, like other 0S-9 file managers, is aimed at providing a logi-
cally unified means of accessing its devices.

Application
Program

0s-9
Kernel
SCF RBF
File Manager File Manager

BF Device

Nickna

Fig. 2.1 IBF Software Architecture.

IBF — A Brief Look

As shown in the module diagram in the previous page, IBF is no
different from other OS-9 file managers such as SCF and RBF,
though a few components have been added to provide more power
to IBF.

Most IBF functions are implemented as system calls: the stand-
ard I$Read/I$Write/I$ReadLn/I$WritLn functions work straight-
forwardly the same as other 0S-9 file managers such as RBF and
SCF; IEEE488-specific functions such as serial and parallel polls
and other bus management functions are implemented as
I1$GetStt and 1$SetStt calls.

2.2 Easy Programming

IBF’s implementation as a file manager allows you to use most
standard C I/O library functions such as read(), write(), and
even your favorite printf() for IBF devices. That’s not all: several
standard OS-9 utility programs such as ECHO and LIST are
usable as well. For example, “1ist file>/ib0/1” will list your
file on an IEEE488 printer at address 1.

For IBF-specific operations, a set of C library functions are
bundled as an interface to the file manager. Some of the library
functions are compatible with Hewlett-Packard’s HP-UX (UNIX)
DIO library functions. (Hewlett-Packard invented the IEEE488
bus.) See the Specification chapter for a list of IBF library funec-
tions.

Refer to a portion of a simplified example C program in the next
page that performs a single measurement on a digital multi-
meter:

IBF Overview

FILE *dvm;

char buf(80];
fp = fopen("/ib0/Avm_hp3478a", °"r+*");
fputs ("TE\n", fp);
fgets(buf, sizeof buf, fp);
printf("Voltage = %s", buf);

2.3 Device Classification

One of IBF’s elegant features is its device classification. IBF
classifies its paths into two classes: an entire bus device is
considered to represent the raw interface to the bus; an auto-
addressed device represents an individual device (other than
oneself) on the bus.

Data Logger

DVM | Freq. Counter / ’ Pen Plotter ,I
\ L /

IEEE488 Bus /

L/

N/ =
Auto-Addressed Devices Entire Bus Device

Fig. 2.2 Entire Bus Device and Auto-Addressed Devices.

This classification concept has made it possible to implement both

complex bus management operations and basic data transfer

IBF — A Brief Look

operations with ease.

For example, an entire bus device path name “/ib0” is used to
send a trigger to all the devices on the bus and an auto-addressed
device path name “/ib0/dvmn1” is used to read data from a DVM
(digital multimeter) named “dvm1” on the same bus as “/ib0.” Use
of these different classes of devices may be intermixed by an

application program.

2.4 Fast Block Transfer

IBF performs “block-oriented” transfers: the file manager and the
device driver transfer data to each other by the block, rather than
by the character as SCF does. The data bytes are usually trans-
ferred directly between the user’s buffer and the LSI.

IBF also features synchronized operations: thanks to IEEE488’s
three-wire handshaking, data transfers are not initiated until a
process explicitly issues either a read or write call. No “inter-
mediate data buffer” to store unread or unwritten data bytes.
This ensures integrity of data from different devices on the bus.

2.5 Portability and Compatibility

Since IBF is not a hardware-dependent library set as you may
find in other implementations but a file manager with support
programs, application programs using IBF are portable among
different platforms without re-compilation. The device nickname
table that resolves a device name to its bus address even absorbs

different bus address configurations.

To OEM users, IBF comes with a complete set of the example

IBF Overview

device driver’s source code files. IBF supports two popular IEEE-
488 interface LSIs: NEC pPD7210 and TI TMS9914A. The
example device driver also includes complete code for the
MC68450 DMAC (Direct Memory Access Controller).

Currently, the IBF device drivers are written in assembly code.
Don’t worry; the porting work will be much easier than you may
think. IBF device drivers were written with great portability and
flexibility in mind; setting a few switch parameters in a definition
file and reassembling the whole program will make the device
driver fit most hardware platforms. Virtually no modification of

the device driver’s source code is necessary.

2.6 The Future

Although the development of the 0S-9000 version of IBF is still
underway as the time of printing, it will inherit all the power of
and maintain a high level of compatibility with its predecessor,
the 0S-9/68000 version, while fully conforming to 0S-9000’s new
features. Call one of our authorized distributors for availability

information.

Chapter 3
Questions and Answers

This chapter provides answers to the questions we have often
been asked. They will help you understand IBF more. If you have
any question that is not found here, please feel free to write to us
at P.0. Box 23, Santa Clara, CA 95052-0023 USA, or fax to 1-408-
244-5358.

3.1 The IEEE488 Standard

Q: Which standard does IBF support?

A: IBF conforms to the IEEE488.1-1987 standard, the latest
revision as of this booklet’s publication date. Nevertheless, since
the IEEE488 standard was first published in 1975, virtually
nothing has changed. IEC625-1 and JIS1901 are practically the
same as IEEE488.1.

Q: Does IBF support IEEE488.2?

A: Yes and no. IEEE488.2 defines higher level protocols such as
common command syntax and data representation. Due to the
nature of 0S-9’s file managers, IBF provides services at the level
of IEEE488.1. Higher level protocols and services defined in
IEEE488.2 should be provided by application programs or other
service modules. Nevertheless, IBF provides satisfactory services
to such higher level protocol programs.

10

Q: Which functions of IEEE488 does IBF support?

A: IBF is capable of all Talker/Listener/Controller functions
except for few which are considered unnecessary to IBF’s appli-
cations, such as talk/listen only. Nevertheless, the necessary
functions may depend on the implementation {porting). For ex-
ample, if the device using IBF has nothing to “trigger,” the Device
Trigger function can be omitted.

For a complete list of interface functions, refer to the next chapter
titled “SPECIFICATIONS.”

Q: Can I apply IBF to an embedded controller controlled
by another computer through an IEEE488 bus?

A: Yes. IBF is good for both the controller (master) device and the
instrument (slave) devices. A controller device’s implementation
presumably has all Talker/Listener/Controller functions where

that of an instrument device lacks the controller function.

3.2 Data Transfer

Q: Does IBF support DMA?

A: Yes. The example device driver bundled with an IBF PortPak
includes code for the MC68450 DMAC (direct memory access
controller). The use of DMA, however, is optional and it is up to
the IBF licensee (implementer) to decide whether to use DMA.
The example device drivers’ DMA code can be easily enabled and

disabled with an assembly switch option.

Q: What is IBF's maximum data transfer rate?
A: IBF is a so-called block-oriented file manager: it transfers data

11

IBF — A Brief Look

by the block, rather than by the character as SCF does. Therefore,
it performs much faster than SCF devices even without DMA.

The actual transfer rate depends on many factors. According to
the experimental reports of our own and our customers, a typical
implementation will result in 3~20kB/s without DMA (all bytes
are handled by interrupts) and 100~500kB/s with DMA.

Q: I thought IEEE488 defines a transfer rate of 1MB/s. Why
is IBF so slow?

A: IBF is not slow. The IEEE488.1 defines the bus’s maximum
data transfer rate or capacity of 1MB/s. To achieve this, however,
the following restrictive conditions are required (values in paren-
thesis are relaxed spec for a 250kB/s transfer rate): [1] the talker
device uses a minimum multiline message settling time of 350ns
(2us); [2] the talk device uses 48mA three-state drivers (open-
collector drivers); [3] the device capacitance on each lead except
for REN and IFC is less than 50pF per device (100pF); (4] all
devices in the system are powered on (2/3 of the devices); and [5]
the interconnecting cable links are as short as 15m (20m) of total
length per system with at least one equivalent load for each
meter (2m) of cable. Besides, neither of popular IEEE488 LSIs
(TMS9914A and pPD7210) will operate at 1MB/s.

Q: If an outside instrument device starts sending data
when my application program using IBF is not yet ready
to receive, are the bytes stored in some buffer so that my
application can read them later, or are they lost?

A: They are neither stored nor lost. All IBF data transfers are
performed “synchronously”: unless your application program

12

Questions and Answers

explicitly issues an I$Read or I$ReadLn call and IBF is ready to
receive data, no bytes are transferred. IEEE488’s patented three-
wire handshaking prevents data overrun and loss.

When your application program sends data bytes to an instru-
ment device, on the other hand, the program will be blocked until

all bytes have been transferred.

This characteristic of IBF presumably matches most IBF applica-
tions in which synchronization between the controller and instru-

ments is important.

Q: I have a thermometer that sends out data only when
there has been a change of more than 0.1°C. Do I have to
keep polling the device?

A: No. IBF is capable of sending a signal to the application pro-
gram (process) when a specific event occurs. The events include
data ready, service request (SRQ) reception, and so forth. Your
application may enter the sleep state so as not to waste CPU time

or commit to doing other tasks.

Q: How does IBF treat record terminators?

A: IBF has two transfer modes: binary and text, which respec-
tively correspond to the I$Read/I$Write and I$ReadLn/I$WritLn
system calls. In binary mode, there is no record terminator char-
acter: data is transferred “as is” without any modification until
either EOI (End or Identify) is detected or the buffer gets full,
whichever occurs first. Binary mode is useful when transferring
large blocks of binary data such as scanner output.

In text mode, a user-definable EOS (End of Sequence) character

13

IBF — A Brief Look

may terminate a data transfer even before EOI is detected or
buffer becomes full. Either carriage return or line feed is usually
chosen as EOS. IBF does the necessary conversion between dif-
ferent line terminators: 0S-9’s CR, UNIX-like LF, and MS-DOS-
like CR+LF. Text mode is useful for transferring ASCII text
strings and is similar to that of SCF (sequential file manager) but

no other text editing such as backspace is provided.

3.3 Bus Management

Q: Do I have to learn how to address devices on the bus?
A: No. Among many of IBF’s nice features, there is a concept
called “auto-addressed device paths.” Once a path is opened to an
auto-addressed device, say “/ib0/17,” IBF maintains a logical path
to the device with the bus address of 17 as long as the path is
open. The standard I$Read/ReadLn/Write/WritLn system calls
and read()/readln()/write()/writeln() C library functions send
address command preambles before transferring user data, so

that it appears transparent to the application program.

Q: How can I perform IEEE488-specific operations?
A: IBF provides many IEEE488 specific services through I$GetStt
and I$SetStt calls. Most of these services are also implemented as
C library routines. Below are just a few of the functions found in
a standard IBF program package:
_ib_abort() . . . Initializes devices’ interface function.
_ib_bus_status() Inquires current hardware status.
—ib_card_ppoll_resp{) Sets up my parallel poll response.
_ib_clear() Sendsdevice clear.

(Many more; see SPECIFICATIONS for a complete list.)

14

Questions and Answers

Q: My application has several processes running concur-
rently and accessing the same IEEE488 bus. Can I ensure
the data integrity?

A: IBF has a function called “device lock.” If a process issues a
system call to lock a device, all other processes will get an
E$DevBsy error when they access the device. The locked status is
released when the process that locked the device issues an unlock
system call or the process closes the path to the device. Of course,

you can use 0S-9’s event semaphores to lock a device as well.

Q: Can I hook up more than one computer using IBF to the
same bus?

A: Yes. You may put multiple computers using IBF on the same
bus and transfer the controller’s role back and forth between
them. To implement such a multi-controller system, however, you
need a fair amount of knowledge of the IEEE488 standard’s con-
troller function section.

3.4 Licenses
Q: Who are using IBF?
A: Since its introduction in 1988, IBF has been ported to many
different hardware platforms. Below are some of our OEM custo-
mers (PortPak licensees):

Aero Systems Engineering, Inc., MN

Bill West Incorporated, CT

British Telecom Research Lab., England

Digalog Systems, Inc., WI

Gespac Inc., AZ

Greenspring Computers, CA

Heurikon Corporation, WI

Inducom Systems B.V., Netherlands

15

IBF — A Brief Look

Lawrence Livermore National Laboratories, CA
Microboards, Inc., Japan

Microcraft, Inc., Japan

Micro-Link, IN

Microsys GmbH, Germany

Minoruta Corporation, Japan

Mizar, TX

Oettle+Reichler GmbH, Germany

Osque Systems, Japan

Rassco, Inc., Japan

Weza System Technologie GmbH, Germany
(And more)

Q: What do I need to use IBF?

A: If you are an end-user and want to use IBF on one or just a
few already-existing computers, try asking your system supplier
for the availability of IBF. You need to buy one copy of IBF object
code license for each computer from the system supplier. If your
system supplier has not ported IBF, try one of the OEM licensees
listed above, or consult one of our authorized distributors listed
on the last page of this booklet. Sorry, we are currently not
marketing off-the-shelf versions of IBF for particular platforms.

If you are a computer manufacturer, system integrator, value
added reseller, or end-user planning to use IBF on a quite few
computers, you need to buy an IBF PortPak. IBF PortPak is
distributed by our authorized distributors listed on the last page
of this booklet.

Q: What is IBF PortPak?

A: An IBF PortPak is a complete starting kit for computer manu-
facturers, system integrators, value added resellers, and all other

16

Questions and Answers

parties who wish to port IBF to their hardware platforms.

An IBF PortPak includes:
« IBF file manager program (object code)
o IBF example device driver (source code, assembly)
o IBF example device descriptor (source code, assembly)
e IBF utility programs (object code)
o IBF test utility programs (object code)
o IBF C language library (relocatable object code)
e Right to run the above IBF programs on a single computer
¢ IBF User’s Manual
e IBF Technical Manual
o IBF Porting Manual.
IBF PortPak is subject to license agreement.

Q: What is needed to sell IBF on our own computer?

A: You need to purchase an IBF object code license for each com-
puter IBF is used on. The object code licenses are sold only to the
PortPak licensees and there are significant volume purchase
discounts. Call one of our authorized distributors.

An IBF object code license includes:

o IBF file manager program (object code)

o IBF device driver (object code, customized)

o IBF example device descriptor (object code, customized)

o IBF utility programs (object code)

o IBF C language library (relocatable object code)

e Right to run the above IBF programs on a single computer.
The IBF User Manual may optionally be purchased.

17

IBF — A Brief Look

Q: Can I buy the whole source code?
A: Yes. We provide flexible licensing plans including the full
source code license and scheduled volume purchase as well.* Call

one of our authorized distributors.

3.5 Porting

Q: What LSIs does IBF support?

A: The example device driver included in an IBF PortPakbsup-
ports either TMS9914A (TI) or uPD7210 (NEC). There are at
least two more IEEE488 LSIs commercially available today,
namely 8291A (Intel) and MC68488 (Motorola). IBF, however,
does not and will not support these parts because they are vir-
tually obsolete and are known to be too buggy or cumbersome.

Q: How long is it estimated to port IBF to a brand-new
hardware platform?

A: The answer may depend on several factors such as complexity
of the hardware, need for DMA, the degree of experience on 0S-9
porting, and so on. The example device driver source code is
designed to be as flexible as possible so that only changing a few
flag parameters customizes it to your own hardware. The shortest
record among our customers is only one day, and our informal
survey has shown an average of less than three days.

Q: What do I need to port IBF besides a PortPak?
A: The following things are necessary:
* Professional 0S-9 or equivalent OS-9 package (V2.2 or
later, from Microware)
* Sysdbg system level debugger (from Microware)

L .
Subject to license agreement.

18

Questions and Answers

® One or more IEEE488 devices

We also recommend the following:"=
* The ANSI/IEEE488.1 standard book
» An IEEE488 bus analyzer
* An IEEE488 printer (e.g. HP22254)
* An IEEE488 DMM (e.g. HP34784)

Q: What kind of IEEE488 bus analyzers are recommended
for porting?

A: Any commercially available IEEE488 bus analyzer/monitor
such as HP59401A (Hewlett-Packard), Analyzer 488 (10 Tech),
GPIB-400 (National Instruments), and so on will be useful. For
porting, however, these are really overkill; a simple bus analyzer
like Ziatech’s ZT 488 with just a number of toggle switches and

LEDs and simple random logic inside will be more than enough.*

A printer with an IEEE488 interface is also useful because the
multiline messages on the bus can be dumped to monitor with its

listen-only mode.

Q: Are there any debugging tool programs?
A: Yes. First, you can use some regular 0S-9 commands such as
LIST and ECHO to read and write from/to an IBF device. For
IEEE488 specific functions, a set of executable command pro-
grams are included in the IBF program package.

*The devices and their manufacture names listed herein are merely for
reference purposes. ARK Systems USA has no relationships with these
companies, and provides no guarantee about these devices for the
compatibility with IBF and about the consequential results caused by use
of these devices.

19

1bl' — A briel Look

3.6 Application Program Development

Q: Is there any special technique needed to develop IBF
application programs?

A: No. As long as you develop your applications in C, all your
existing techniques and tools will work as well. See the Bus
Management section for the library functions.

Q: Do I need a special tool for debugging my IBF applica-
tion?

A: If your application talks with more than one IEEE488 device
or there is heavy bus traffic, we recommend using a good IEEE-
488 bus analyzer. Refer to the previous section titled “Porting.”

3.7 Technical Support

Q: How do I get technical support for IBF?

A: If you are an end-user, contact your system supplier first.
This will screen out most hardware and implementation-specific
problems. If the system supplier can’t find the correct solution or
the problem appears to be general, it will be relayed to us and you
will get the solution from the system supplier.

If you are a PortPak licensee, contact the authorized IBF dis-
tributor you purchased IBF from. They are very knowledgeable
about OS-9 and IBF, and will help you solve the problem.

Whenever IBF is improved or a major bug is fixed, we promptly
notify you through our authorized distributors and you will
receive necessary materials such as update disks and/or work-

around instructions. We keep you informed.

20

Specifications

Chapter 4
Specifications

Product Name:
IBF — IEEE488/GP-IB Interface Bus File Manager.

CPU:
All Motorola MC68xxx CPUs supported by 0S-9/68000.

0S:
08S-9/68000 V2.2 and up.

Functions:
IBF has the following entries of standard 0S-9 file managers:
Create, Open, Read, Write, Readln, Writeln, GetStat, SetStat,
Close (MakDir, ChgDir, Delete and Seek are not supported).

Supported LSIs:
NEC pPD7210 and TI TMS9914A.

Interface Functions:
(An example implementation with the nPD7210)

SH1 . . Complete capability of source handshake interface.
AH1 . Complete capability of acceptor handshake interface.
T6 Talkerinterface capability except talk only.

*Subject to change without notice.

21

IBF — A Brief Look

TEO No capability of extended talker interface.
4 Listener interface capability except listen only,
LE0O No capability of extended listener interface.
SR1 . . . Complete capability of service request interface.
RLO . No capability of remote/local interface.

PP1 Remote configuration capability of parallel poll interface.
PP2 Local configuration capability of parallel poll interface.

DC1 Complete capability of device clear interface.
DT1 . . . Complete capability of device trigger interface.
Cl1 Systemcontroller interface capability.
C2 S8SendIFC, controller-in-charge capabilities.
C3 SendREN capability.
C4 ResponsetoSRQ capability.
Cs5 Complete capability of controller.
Transfer Modes:

Binary: No end-of-line character processing (I3Read/I$Write)
Text: End-of-line character processing (I$ReadLn/I$WritLn).

DMA Transfer:
Optionally supported by the device driver.

Mutual Exclusion:
A device can be locked by a process.

Conforming Standards:
ANSI/IEEE488.1-1987, JIS C1901, IEC 625-1.

C Library Functions:
_ib_abort(), _ib_bus_status(), _ib_card_ppoll_resp(), _ib_clear(), _ib_lmsg(),
_ib_local(), _ib_local_lockout(), _ib_loack(), _ib_pass_ctl(), _ib_ppoll(),
-ib_ppoll_config(), _ib_ppoll_resp_ctl(), _ib_ppoll_unconfig(), _ib_remote(),
_ib_ren_ctl(), _ib_rqst_srvee(), _ib_send_cmnd(), _ib_set_sig(), _ib_spoll(),
_ib_status_wait(), _ib_timeout_ctl(), _ib_trigger(), _ib_unlock()

y M

22

Appendix

| Appendix
Authorized Distributors

IBF is distributed and supported by the following authorized

distributors; please inquire prices, terms, and conditions of:

BAMERICA:
Windsor Systems
2407 Lime Kiln Lane, Louisville, KY 40222 U.S.A.
Phone: 502-425-9560/Fax: 502-426-3944

NASIA:

Microboards, Inc.
Takase-Cho 31-8, Funabashi-Shi, Chiba 273 Japan

Phone: 0474-37-9808/Fax: 0474-37-9822

Osque Systems, Inc.
Hoei Plaza #902, Ogikubo 5-30-17, Suginami-Ku, Tokyo 167 Japan
Phone: 03-3220-0384/Fax: 03-3220-0417

BEUROPE:

Galactic Industrial, Ltd.
Unit 3B, Mountjoy Research Centre, Stockton Road,
Durham, DH1 3UR England
Phone: 091-3848343/Fax: 091-3847742

Snowtop Computers, Ltd.

45 Summer Street, Slip End, Bedfordshire, LU1 4BL England
Phone: 0582-451084/Fax: 0582-20764

23

	IBF
	Table of Contents
	Untitled
	Chapter 1. Introduction
	Chapter 2. IBF Overview
	2.1 Modular Software Architecture
	Fig 2.1 IBF Software Architecture

	2.2 Easy Programming
	2.3 Device Classification
	Fig 2.2 Entire Bus Device and Auto-Addressed Devices

	2.4 Fast Block Transfer
	2.5 Portability and Compatibility
	2.6 The Future

	Chapter 3. Questions and Answers
	3.1 THE IEEE488 Standard
	3.2 Data Transfer
	3.3 Bus Management
	3.4 Licenses
	3.5 Porting
	3.6 Application Program Development

	Chapter 4. Specifications
	Appendix - Authorized Distributors

